If it's not what You are looking for type in the equation solver your own equation and let us solve it.
432=3x^2
We move all terms to the left:
432-(3x^2)=0
a = -3; b = 0; c = +432;
Δ = b2-4ac
Δ = 02-4·(-3)·432
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72}{2*-3}=\frac{-72}{-6} =+12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72}{2*-3}=\frac{72}{-6} =-12 $
| x/23=-7 | | x-19=11.25 | | x-0.8=3.2 | | y-57=63 | | H(t)=-16^2+24 | | 7p=4p+27 | | X+1=16x+9 | | 10x+55/10=0 | | 1/x=-0.015 | | 25x-18=21x+6 | | 4.9(9p+16)=18 | | 5y+5=10y-35 | | -17=3x-12 | | 12y(y+3)=5(2y-7) | | 5y-25=4y+28 | | 2(1-2x)=4x+8 | | 5x-7/3=3x+2/3 | | (X-4)(x-5(x-6)(x-7)=1680 | | 10y+13=7y+31 | | (x^2+6x-7)^2/3=9 | | 7x+9=5x-9 | | X+4/16=5x | | 23+7y=91 | | x+(2x/25)=12078 | | x+(2x/25)=12708 | | -18x+4=-5 | | 3r^2+12r+13=0 | | 44x=x^2-135 | | 11x=x^2-33.75 | | 7x^-14x+14=0 | | 4x+1-9(2x)=-2 | | 10^x=3.16228 |